
Practical SAFE © 2003

Table of Contents for Chapter 5

TABLE OF CONTENTS FOR CHAPTER 5..1

PART 1. ARCHITECTURE 101 – ‘THE LANGUAGE WE SPEAK’..2

<<< … >>>..2

CHAPTER 5. ARCHITECTURE PUZZLE...2
What is Architecture?..2

Levels of Abstraction and Granularity...3
Architecture Defined – ‘pick one’...3
Architecture Reference Models..7

Reference Model of Open Distributed Processing (RM-ODP)...7
Catalysis...8
The Open Group Architectural Framework (TOGAF)..9
Zachman Institute for Framework Advancement (ZIFA)..11
That’s not all, folks…..11

Software Architect’s Profession..14
Who Is the Software Architect?...14
Why Good Architecture is Important?...16
What Makes an Architect Good? ..16

Revolution and Evolution..19

<<< … >>>..20

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 1 of 20

Practical SAFE © 2003

Part 1. Architecture 101 – ‘The Language We Speak’

<<< … >>>

Chapter 5. Architecture Puzzle

In this chapter, we define Software Architecture and Enterprise Architecture – something that we, IT
Architects of various kinds and shapes, do. Yes, we too could not resist. We have to give a definition of
what we preach and practise. As soon as we able to define what we do, we can start thinking about how
to be good at it.

Sometimes we use IT Architecture and IT Architect as more generic labels for many other overlapping
and related notions, in order to avoid still present fuzziness of definitions in the Software Architecture
field. In this chapter, we may just use terms Architecture and Architect meaning all of the above, unless
ambiguity in discussion requires greater specificity.

Architecture may be many things to many people. It seems everyone has an intuitive understanding of
the term Architecture as it applies to the Information Technology. Anyone can give own definition of
the Architecture that, upon closer inspection and careful qualification, almost guaranteed to be ‘good
enough’. And, there are many existing adopted definitions of Architecture with its views and layers to
choose from.

Merriam-Webster’s Dictionary gives us as good starting point as any: “Architecture – the manner in
which components of a computer or computer system are organized and integrated”.

What is Architecture?

In the most general sense, the Architecture of the system consists of some parts, structure of these
parts, externally visible properties and interfaces of parts, and the relationships and constraints between
parts. Parts of the Architecture may represent some components, partitions and layers that can be de-
coupled from the rest of the bigger picture, and viewed separately of the surrounding context.
We then analyse every component on every level or layer in order to understand further:

� Visible external Properties of the Architecture component
� Behaviours of the component
� Events, exceptions or signals that component is able to consume or emit while playing its role

of being the part of bigger Architecture
� Interfaces with the surrounding context (ie. other components and layers in the Architecture)

or with the wide wild external world. Actually, Interface definition comprises
abovementioned points (properties, behaviours, and events). We make a separate point out of
Interface due to the importance of this notion. In a well-designed Architecture, component is
its public interface for all intents and purposes

� Processes that the component participates in, interacting with some other components and
layers. Architecture should identify processes for every stage in the component’s life cycle,
and every significant use in fulfilling the business goals of the Enterprise

� Internal Structure of the component or layer aiming to implement the required interfaces of
the component, with required quality.

This definition of Architecture appears to be generic and recursive, i.e. applicable to any system, and to
any part of the system on various levels of granularity and refinement. Despite having this vision as a
commonly accepted starting point, methodologies and approaches may vary dramatically, at least on
the surface.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 2 of 20

Practical SAFE © 2003

Note that the Internal Structure of the component was mentioned last, arguably as the point of the
lesser importance from the Architecture prospective. This is not to say that Architecture does not care
about component’s internals: one component’s internals – another component’s external context.
Here lies the fundamental quality of the good Architecture – re-use and repleceability of
implementation of the component, for the ease of integration and for containment of the impact of
component’s evolution on its context in the Architecture.

Architecture schools and authors differ in their ways of how they slice and dice the complex system
models further. In dissecting the system, different methodologies may define their own orthogonal
dimensions or views, constructs and principles, and own approaches in pulling apart the components
and layers of the larger system.

No single view or level of refinement of the Architecture will present a sufficiently comprehensive
model of the system – only multitude of views, depending on the complexity of the system and fit for
purpose.

There is no size for the definition and documentation of the Architecture that fits all.
In other words, there are many ways to skin a cat… (Apologies to the animal lovers, just a figure of
speech. I did not really mean to do this to my, or to any other cat. Usually, no animal gets hurt in the
process of designing the Architecture. But then again, mind of the Software Architect could be a
mystery…)

Levels of Abstraction and Granularity

Human brain has natural limits to complexity that it can deal with. Our ability limited by how many
entities and relationships we can grasp simultaneously at a time (seven is an indicative number).
We circumvent our limitations by using Abstraction – removal of unimportant details from the picture,
irrelevant to the particular consideration.

We apply Abstraction in analysis and design of the Architecture to the whole system by de-composing
it into the finite and manageable number of identifiable components, parts and layers. We continue this
process of system de-composition iteratively and recursively, until we reach the well understood basic
building blocks of the target Architecture. Some iteration in the Architecture design may go in the
opposite direction, from inside out, when well understood or pre-selected bulding blocks are used to
assemble the bigger part of the Architecture.

Abstractions may differ by the level of detail. One Abstraction can be an expanded drill-down version
of another, when finer details come to light. Level of detail in the Abstraction determines the
Granularity of the view. Our models may be coarse-granular or fine granular.
Levels of Abstraction will complement each other. Higher levels of abstraction will represent the
coarse-granular view of the Architecture.

Architecture Defined – ‘pick one’

Let’s take stock of some Architecture definitions, including our main focus of interest – Software
Architecture and Enterprise Architecture.

Many of the Architecture’s ‘classic definitions’ have been located thanks to the comprehensive
collection of quotations in [WWW SEI], [WWW EWITA], and [WWW Bredemeyer].
Check these websites out for many more, both classic or textbook definitions, and definitions from
battle-hardened grass-roots practitioners. Good thing about standard definitions – there are so many of
them to chose from�…

Software Architecture definition in [Bass 1998] and [WWW SEI]:

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 3 of 20

Practical SAFE © 2003

“The software architecture of a program or computing system is the structure or structures of the
system, which comprise software components, the externally visible properties of those components,
and the relationships among them.
By ‘externally visible’ properties, we are referring to those assumptions other components can make of
a component, such as its provided services, performance characteristics, fault handling, shared resource
usage, and so on. The intent of this definition is that Software Architecture must abstract away some
information from the system (otherwise there is no point looking at the architecture, we are simply
viewing the entire system) and yet provide enough information to be a basis for analysis, decision
making, and hence risk reduction.”
“Let's look at some of the implications of this definition in more detail.
First, architecture defines components. The architecture embodies information about how the
components interact with each other. This means that architecture specifically omits content
information about components that does not pertain to their interaction.
Second, the definition makes clear that systems can comprise more than one structure, and that no one
structure holds the irrefutable claim to being the architecture. By intention, the definition does not
specify what architectural components and relationships are. Is a software component an object? A
process? A library? A database? A commercial product? It can be any of these things and more.
Third, the definition implies that every software system has architecture, because every system can be
shown to be composed of components and relations among them.
Fourth, the behavior of each component is part of the architecture, insofar as that behavior can be
observed or discerned from the point of view of another component. This behavior is what allows
components to interact with each other, which is clearly part of the architecture. Hence, most of the
box-and-line drawings that are passed off as architectures are in fact not architectures at all. They are
simply box-and-line drawings.”

[Booch 1999]:
“An architecture is the set of significant decisions about the organization of a software system, the
selection of the structural elements and their interfaces by which the system is composed, together with
their behavior as specified in the collaborations among those elements, the composition of these
structural and behavioral elements into progressively larger subsystems, and the architectural style that
guides this organization - these elements and their interfaces, their collaborations, and their
composition.”

[Jazayeri 2000]:
“Software Architecture is a set of concepts and design decisions about the structure and texture of
software that must be made prior to concurrent engineering to enable effective satisfaction of
architecturally significant explicit functional and quality requirements and implicit requirements of the
product family, the problem, and the solution domains.”

From the UML 1.3 Specification [WWW OMG]:
“Architecture is the organizational structure of the system. Architecture can be recursively decomposed
into parts that interact through interfaces, relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces include classes, components and subsystems.”

David Garlan and Dewayne Perry have adopted the following definition for their guest editorial to the
April 1995 IEEE Transactions on Software Engineering devoted to Software Architecture:
“The structure of the components of a program/system, their interrelationships, and principles and
guidelines governing their design and evolution over time.”

Writing in 1994 for the ARPA Domain-Specific Software Architecture (DSSA) program, Hayes-Roth
says that Software Architecture is “...an abstract system specification consisting primarily of functional
components described in terms of their behaviors and interfaces, and component-component
interconnections”.

Barry Boehm and his students at the USC Center for Software Engineering write in 1995:
“A software system architecture comprises:

� A collection of software and system components, connections, and constraints
� A collection of system stakeholders' need statements

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 4 of 20

Practical SAFE © 2003

� A rationale which demonstrates that the components, connections, and constraints define a
system that, if implemented, would satisfy the collection of system stakeholders' need
statements.”

By “system stakeholders’ need statements” Boehm’s definition of the Software Architecture means
requirements, both functional and non-functional.

[Hofmeister 2000]:
Based on structures found to be prevalent and influential in the development environment of industrial
projects that they studied at Siemens Corporate Research, software architecture has at least four distinct
incarnations.
Within each category, the structures describe the system from a different perspective:

� The conceptual architecture describes the system in terms of its major design elements and the
relationships among them

� The module interconnection architecture encompasses two orthogonal structures: functional
decomposition and layers

� The execution architecture describes the dynamic structure of a system
� The code architecture describes how the source code, binaries, and libraries are organized in

the development environment.

[Shaw 1996]:
In 1995, at the First International Workshop on Architectures for Software Systems, Mary Shaw
provided a much-needed clarification of the terminological chaos. Distilling the definitions and
viewpoints (implicit or explicit) of the workshop's position papers, Shaw classifies the views of
software architecture thus:

� Structural models all hold that software architecture is composed of components, connections
among those components, plus (usually) some other aspect or aspects, including (grouping
suggested by the authors):

� Configuration, style
� Constraints, semantics
� Analyses, properties
� Rationale, requirements, stakeholders' needs

Work in this area is exemplified by the development of architectural description languages (ADLs),
which are formal languages that facilitate the description of architecture's components and connections.
The languages are usually graphical, and provide some form of "box and line" syntax for specifying
components and hooking them together.

� Framework models are similar to the structural view, but their primary emphasis is on the
(usually singular) coherent structure of the whole system, as opposed to concentrating on its
composition. Framework models often target specific domains or problem classes. Work that
exemplifies the framework view includes domain-specific software architectures, CORBA or
CORBA-based architecture models, and domain-specific component repositories.

� Dynamic models emphasize the behavioral quality of systems. "Dynamic" may refer to
changes in the overall system configuration, setting up or disabling pre-enabled
communication or interaction pathways, or the dynamics involved in the progress of the
computation, such as changing data values.

� Process models focus on construction of the architecture, and the steps or process involved in
that construction. In this view, architecture is the result of following a process script. This
view is exemplified by work in process programming for deriving architectures.

These views do not preclude each other, nor do they really represent a fundamental conflict about what
software architecture is. Instead, they represent a spectrum in the software architecture research
community about the emphasis that should be placed on architecture - its constituent parts, the whole
entity, the way it behaves once built, or the building of it. Taken together, they form a consensus view
of software architecture.

In what has come to be regarded as seminal paper on Software Architecture, David Garlan and Mary
Shaw suggest in 1993 that Software Architecture is a high level of design concerned with issues
beyond simple programming.
“As the size and complexity of software systems increases, the design problem goes beyond the
algorithms and data structures of the computation: designing and specifying the overall system
structure emerges as a new kind of problem. Structural issues include gross organization and global

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 5 of 20

Practical SAFE © 2003

control structure; protocols for communication, synchronization, and data access; assignment of
functionality to design elements; composition of design elements; scaling and performance; and
selection among design alternatives. This is the software architecture level of design.”

Crispen in 1994:
” An Architecture, as we intend to use the term, consists of (a) a partitioning strategy and (b) a
coordination strategy. The partitioning strategy leads to dividing the entire system in discrete, non-
overlapping parts or components. The coordination strategy leads to explicitly defined interfaces
between those parts.”

Moriconi in 1994:
“A software architecture is represented using the following concepts:

1. Component: An object with independent existence, e.g., a module, process, procedure, or
variable.

2. Interface: A typed object that is a logical point of interaction between a component and its
environment.

3. Connector: A typed object relating interface points, components, or both.
4. Configuration: A collection of constraints that wire objects into a specific architecture.
5. Mapping: A relation between the vocabularies and the formulas of an abstract and a concrete

architecture. The formula mapping is required because the two architectures can be written in
different styles.

6. Architectural style: A style consists of a vocabulary of design elements, a set of well-
formedness constraints that mush be satisfied by any architecture written in the style, and a
semantic interpretation of the connectors.

Components, interfaces, and connectors are treated as first-class objects - i.e., they have a name and
they are refinable. Abstract architectural objects can be decomposed, aggregated, or eliminated in a
concrete architecture. The semantics of components is not considered part of architecture, but the
semantics of connectors is.”

Garlan in 1994:
“A critical aspect of the design for any large software system is its gross structure that is, its high-level
organization of computational elements and interactions between those elements. Broadly speaking, we
refer to this as the software architectural level of design.”

Kruchten in 1994:
“Software architecture deals with the design and implementation of the high-level structure of the
software. It is the result of assembling a certain number of architectural elements in some well-chosen
forms to satisfy the major functionality and performance requirements such as scalability and
availability. Software architecture deals with abstraction, with decomposition and composition, with
style and esthetics.”

Dewayne Perry and Alexander Wolf in “Foundations for the Study of Software Architecture”, ACM
SIGSOFT Software Engineering Notes, 17:4, October 1992:
“… Software architecture is a set of architectural (or, if you will, design) elements that have a
particular form.
We distinguish three different classes of architectural element:

� Processing elements;
� Data elements; and
� Connecting elements.”

[IEEE STD 610.12-1990] on Architecture and System:
Architecture is defined as “the structure of components, their relationships, and the principles and
guidelines governing their design and evolution over time”.
“Architecture is the organisational structure of a system.”
“A system is a collection of components organised to accomplish a specific function or set of
functions.”

[Rechtin 1991] on System Architecture:
“The term Architecture (System Architecture) is widely understood and used for what it is – a top-down
description of the structure of the System.”

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 6 of 20

Practical SAFE © 2003

UML 1.3 definition of a System:
“A system is a collection of connected units that are organized to accomplish a specific purpose. A
system can be described by one or more models, possibly from different viewpoints.”

[ANSI/IEEE Std 1471-2000], Standard for Architectural Description of Software-Intensive Systems on
System Architecture:
“The fundamental organization of a system, embodied in its components, their relationships to each
other and the environment, and the principles governing its design and evolution.”

Ruth Malan [WWW Bredemeyer] on the Enterprise Architecture:
“An enterprise is made up of many interacting systems of various kinds. Enterprise Architecture
identifies these systems, their key properties, and their interrelationships, and plans for and guides the
evolution of the enterprise systems to support and enable the evolution of the enterprise in its pursuit of
strategic advantage.
Thus, Enterprise Architecture is fundamentally is a ‘system of systems’ architecture, while Software
Architecture is a ‘system of components’ architecture (where systems produce stand-alone value, and
components have to be composed into a system to produce value).”

The Open Group’s definition of the Enterprise Architecture in [WWW TOGAF]:
“There are four types of architecture that are commonly accepted as subsets of an overall Enterprise
Architecture:

� Business Architecture: this defines the business strategy, governance, organization, and key
business processes.

� Data/Information Architecture: this describes the structure of an organisation’s logical and
physical data assets and data management resources.

� Application (Systems) Architecture: this kind of architecture provides a blueprint for the
individual application systems to be deployed, their interactions, and their relationships to the
core business processes of the organization.

� Information Technology (IT) Architecture: the software infrastructure intended to support the
deployment of core, mission-critical applications. This type of software is sometimes referred
to as ‘middleware’, and the architecture as a ‘technical architecture’.”

Architecture Reference Models

This section outlines some of the more representative complete conceptual frameworks for analysis and
design of Software and Enterprise Architectures.

Reference Model of Open Distributed Processing (RM-ODP)

The Reference Model of Open Distributed Processing (RM-ODP) describes common interaction model
for heterogeneous distributed systems ensuring their interworking, interoperability, and portability.
The RM-ODP standard is known as both ISO International Standard 10746 and ITU-T (formerly
CCITT) X.900 Series of Recommendations.

Stated goals of the RM-ODP are:
� Portability of applications across heterogeneous platforms
� Interworking between distributed components of the system by meaningful exchange of

information and convenient use of functionality throughout the distributed system
� Distribution transparency by hiding the distribution and remoteness of components from the

application programmers and users

RM-ODP defines five abstract viewpoints for describing the distributed systems:
� Enterprise Viewpoint – purpose, scope, business objects and policies
� Information Viewpoint – semantics of information processing, and data model schemas of

three kinds – static, invariant, and dynamic schemas

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 7 of 20

Practical SAFE © 2003

� Computational Viewpoint – object-based functional decomposition of the distributed system,
interfaces and behaviours

� Engineering Viewpoint – infrastructure required to support distribution using the notation of
objects and channels. Channel provides communication mechanisms and controls
transparency functions

� Technology Viewpoint – choices of technology for implementation

RM-ODP defines set of functions or common services for management, transactions, persistence,
objects registry and location, security.

RM-ODP defines an initial extensible set of transparencies that hide the distribution and heterogeneity
of the system from the user:

� Access Transparency – hides the differences in data representation and access procedures
� Location Transparency – hides distinction between local versus remote
� Relocation Transparency – hides the relocation of the object transparent to its clients
� Migration Transparency – masks the relocation of the object from that object and its clients
� Persistence Transparency – masks the activation and deactivation of an object from the

storage
� Failure Transparency – masks the failure and recovery of the objects for fault tolerance
� Replication Transparency – hides group of replica objects from the common interface
� Transaction Transparency – hides the coordination required to satisfy the transactional

integrity of operations

Catalysis

Catalysis is the standards-based methodology for the systematic development of object and
components-based systems.
Original developers of the Catalysis methodology are Desmond D’Souza and Alan Wills [D’Souza
1999].

Catalysis method has a simple core, covering three Levels of Description, using three basic Modelling
Constructs, applying three underlying Principles.

Three Levels of Description, or Modelling Scopes:
� Domain/Business Models. For any component, a domain model describes the context in

which that component will reside. Domain model identifies the problem and establishes the
problem domain terminology. Domain model helps understand business processes, roles and
collaborations. Methodology can build distinct as-is, or models describing existing business
context, and to-be models. Domain models can be of interest independent of any software
system or component

� Component External Specifications. Component specification describes externally visible
behaviour of component with its environment, and defines component responsibilities and
interfaces

� Component Internal Design. Internal design model defines internal architecture of
components and how the external behaviour is actually implemented. Architect will exercise
own judgement on how detailed a dissection of the component, and how deep a drill-down
into the guts of internal design is required

Catalysis method uses three basic Modelling Constructs. Or, rather, two primary modelling constructs
(Collaboration and Type) complemented by construct for levels of abstraction (Refinement) and
composition patterns for all other constructs (Framework):

� Collaboration. Specifies behaviour of group of objects
� Type. Specifies externally visible behaviour of an object, abstracting from details of its

internal design, algorithms and data structures
� Refinement. Relates different levels of detail or abstraction in the description of behaviour.

Provides mapping and traceability for each element between different levels
� Framework. Captures generic recurring patterns of Collaborations, Types and Refinements.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 8 of 20

Practical SAFE © 2003

Three Principles of Catalysis are:
� Abstraction. Focuses on essential aspects, aims for uncluttered description of requirements

and architecture. Encourages developer to stay on higher level of abstraction whenever
possible. Dealing with complexities of the software system on the code level may be
overwhelming. Examples of common abstractions are interfaces (which hide implementations
details), and architectural patterns (which hide details of usage in different domains)

� Precision. Exposes gaps and inconsistencies early, makes abstract models accurate
� Pluggable Parts. Most of the work done by adapting and composing existing or off-the-shelf

parts or components. Models, architectures and designs are assets. Catalysis aims to “reduce
magic” and nurtures re-use of components

Constructs and Principles recursively apply at all Levels.

Catalysis gives its definition of Architecture as the set of principles for design decisions, rules, or
patterns about any system that keeps its designers from exercising needless creativity.
Catalysis aims to minimize the magic that happens in the software development process.

The Open Group Architectural Framework (TOGAF)

In 1984, group of European vendors formed X/Open consortium committed to promoting the
independent standards and achieving portability of IT solutions. X/Open gained worldwide recognition
and published series of Portability Guides (XPGn).

Open Software Foundation (OSF) was founded in 1988 by major system vendors in support for not-
for-profit international research and development.

The Open Group consortium came into life by amalgamation of efforts of two consortiums – X/Open
and OSF. [WWW OpenGroup]

The Open Group aims to bring together customers and suppliers of information systems while keeping
neutrality towards vendors, products and technologies.
The Open Group develops and deploys frameworks, policies, best practices, standards, and
conformance programs that address needs of customers and, at the same time, reconcile and guide
efforts of many vendors of information technology.

The Open Group pursues the vision of making all technology open, accessible, and interoperable.
“Anyone will be able to access anything to which they are entitled from anywhere at anytime”.

The Open Group Architecture Framework (TOGAF) started its history from 1994 with definition of
requirements. The Open Group delivered new version of TOGAF every year ever since. In 2001,
TOGAF Version 7 was released.
To the large extent, TOGAF leverages IT systems engineering advances in defense and aerospace
industries that historically were at the forefront of architectural thinking. However, major commercial
vendors and stakeholders increase their share of contributions.

TOGAF is an architectural framework consisting of two parts:
� The TOGAF Architecture Development Method (ADM), which explains how to derive

organization-specific IT architecture that addresses business requirements. “The key to
TOGAF is the TOGAF Architecture Development Method (ADM) – a reliable, proven
method for developing an IT Architecture that meets the needs of your business” [WWW
TOGAF, Frequently Asked Questions]. ADM provides architecture views and tools for
architecture development. The Open Group embarked on development of standard for
Architecture Description Markup Language (ADML) – XML-based language for describing
software architectures to enable their representation, evaluation and analysis.

� The TOGAF Foundation Architecture that includes The TOGAF Standards Information Base
(SIB), a database of open industry standards for services and components. Building Blocks
Information Base (BBIB) - re-useable architectural building blocks. Foundation Architecture
defines TOGAF Technical Reference Model (TRM) that introduces taxonomy and scope of
services and system-wide capabilities, or qualities (like Security, Transaction Processing, or

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 9 of 20

Practical SAFE © 2003

Data Management). TOGAF provides Architecture Principles, Architecture Views and
Business Scenarios as architect’s tools and resources.

Figure 5.1. TOGAF Structure and Components

TOGAF defines overall Enterprise IT Architecture as consisting of four closely interrelated
Architectures – Business Architecture, Data/Information Architecture, Application Architecture, and
Technology (IT) Architecture.

TOGAF recognizes the fact that there is no single universal architecture suitable for all purposes at all
times. There is a continuum of architectures, and IT architects require design tools in the form of
architectural framework.
Architectural Framework embodies best practices and acknowledged wisdom, and guides the
development of specific architectures. Framework does not make architectural design an automatic
process, but provides a valuable aid to experienced IT Architects.

Zachman Institute for Framework Advancement (ZIFA)

Zachman Framework [WWW ZIFA] is a high-level framework that describes architecture elements.

Zachman Framework can be used to describe any other framework by mapping to the defined
architecture elements. Zachman Framework has consistently proven itself in building many large-scale
Enterprise Architectures, and in use by architecture tool vendors (eg. Ptech, Popkin).

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 10 of 20

Technical
Reference

Model
(TRM)

Standards
Information

Base
(SIB)

Building
Blocks

Information
Base

(BBIB)

Architecture Development Method (ADM)

Resource Base
(ADML, Arch Compliance Reviews, Arch Principles, Arch Views,

Business Scenarios, Case Studies, IT Governance Strategies)

TO
G

A
F

Fo
un

da
tio

n
A

rc
hi

te
ct

ur
e

Services
Taxonomy

Standards Architecture
Building Blocks

Target
Architectures

Source: TOGAF

Practical SAFE © 2003

In words of John Zachman: “The Zachman Framework is a total set of descriptive representations to
fully describe a complex object”.

Zachman Framework can be visualised as a two-dimensional model that defines various Abstractions
(or aspects, columns in the matrix) and Perspectives (or viewpoints on a given aspect, rows of the
matrix). Cell in the matrix on the intersection of particular Abstraction and Perspective defines a
specific model for documenting the architecture design.
Framework guides architects towards verifiable completeness of vision of the Enterprise Architecture,
and determining required work products for documenting the architecture.

Figure 5.2. Concepts of the Zachman Framework for Enterprise Architecture

That’s not all, folks…

Having observed many views and definitions of the Architecture, we could not resist in the heading of
this section above but paraphrase the saying of our favourite rabbit…

Facing variety of specific challenges in building the Enterprise Architecture, Architects all over the
world absorb some canonical definitions and methodologies, and embark on the task of adjusting and
adopting these visions better to the problem at hand, and rightfully so.

Whole industries (like public services, military, or health) and large Enterprises may have architecture
concepts and methodologies well standardised, making life of the Software Architect somewhat easier

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 11 of 20

Abstractions DATA
(What)

List of Things
Important to Business

Entity=Class of
Business Thing

SCOPE
(Planner’s View, Contextual)

ENTERPRISE MODEL
(Owner’s View, Conceptual)

e.g., Entity-Rel.
Diagram,

Semantic Model

Ent=Business Entity
Rel=Business Rel.

SYSTEM MODEL
(Designer’s View, Logical)

e.g., Logical
Data Model

Entity=Data Entity
Relationship= Data

Relationship

TECHNOLOGY
CONSTRAINED

MODEL
(Builder’s View, Physical)

e.g., Physical
Data Model

Entity=Table/Segment
Rel=Key/Pointer

DETAILED
REPRESENTATION
(Sub-Contractor’s View,

Out-Of-Context)

e.g., Data Definition

Ent=Fields
Rel=Addresses

FUNCTION,
PROCESS

(How)

Location,
NETWORK

(Where)

PEOPLE,
Organization

(Who)

TIME,
SCHEDULE

(When)

Motivation,
STRATEGY

(Why)

List of Processes the
Business Performs

Function=Class of
Business Process

e.g., Function Flow
Diagram, Bus. Process

Model

Function=Bus. Process
I/O=Bus. Resources

e.g., Data Flow
Diagram, App. Arch

Funct=Appl Function
I/O=User Views

e.g., Structure Chart,
System Design

Funct=Computer Funct
I/O=Screen/Device

Formats

e.g., Program

Funct=Language Stmts
I/O=Control Blocks

List of Locations
Important to Business

Node=Major Business
Location

List of Organizations
Important to Business

Agent=Major Org Unit

List of Events
Significant to Business

Time=Major Business
Event

List of Business
Goals/Strategies

End/Means=Major
Bus Goal / Critical

Success Factors

e.g., Logistics Network

Node=Business
Location

Link=Business
Linkage

e.g., Organization
Chart

Agent=Org Unit
Work=Work Product

e.g., Master Schedule

Time= Business Event
Cycle=Business Cycle

e.g., Business Plan

End=Bus Objectives
Means=Bus Strategy

e.g., Distributed
System Architecture

Node=Info Sys Funct
Link=Line Char

e.g., Human Interface
Architecture

Agent=Role
Work=Deliverable

e.g., Processing
Structure

Time=System Event
Cycle=Processing Cycle

e.g., Knowledge Arch,
Bus. Rule Model

End=Structure Assert
Means=Action Assert

e.g., System Arch,
Technical Arch

Node=Hardware/
System Software
Link=Line Spec

e.g., Human/
Technology Interface

Agent=User
Work=Job

e.g., Control Structure

Time=Execute
Cycle=Component

Cycle

e.g., Knowledge
Design, Rule Design

End=Condition
Means=Action

e.g., Network
Architecture

Node=Addresses
Link=Protocols

e.g., Security
Architecture

Agent=Identity
Work=Transaction

e.g., Timing Definition

Time=Interrupt
Cycle=Machine Cycle

e.g., Knowledge
Definition, Rule Spec

End=Subcondition
Means=Step

FUNCTIONING ENTERPRISE

Perspectives

© 2003 SAFE House

Practical SAFE © 2003

by reducing upfront the multitude of hard choices that Architect has to make, and by aligning all major
players in the Enterprise Architecture behind the one consistent vision.
One may criticize the particular framework or methodology. Framework may work better or worse in
every particular situation, but the introduction into the large and complex project, with many
stakeholders and agendas, of the cohesive big-picture vision, is a good thing – if nothing else, good for
narrowing down the problem area.

Architectural Framework is the important pre-requisite for successful risk management in building the
Enterprise Architecture.
It may take time, efforts, and persistence to have an architectural framework for your industry,
enterprise, or application domain nailed down and agreed upon by main stakeholders. But, as soon as
framework is successfully utilized at least once with all infrastructure put in place and experiences
accumulated, it can only get easier, better, and cheaper second and third time around (Product Line for
the Enterprise Architecture if you like).

Software and Enterprise Architecture is a fluid field, constantly evolving with advances in the
Information Technology. In addition, Software Architecture challenges may vary depending on its
place in the core business of the Enterprise, and the level of buy-in.
Many, even sizeable, enterprises will not impose on the staff Architect or consultant the prescribed
framework for building the Enterprise Architecture. In no way this means that Software and Enterprise
Architect can releave him/herself from the responsibility of devising the systematic vision for the
Enterprise Architecture that strives to achieve its business goals. Best contribution of the Software
Architect to the Enterprise may well be the definition of such a vision.
No Enterprise can afford a free-fall approach in strategic technological decisions – risk is just too high
for the Enterprise that has the critical dependency of its core business and its competitive advantage on
the Information Technology.
Software or Enterprise Architects’ mistakes are much more damaging and costly than the ones of a
Programmer.

We take our hats off before scores of practicing Software Architects and Enterprise Architects out there
in the field, who often face a challenge of not just delivering a single project, but putting a house in
order by delivering an architecture vision for their Enterprise, and by advancing and enriching the
collective architecture knowledge base in the process.

Local efforts may range from the meticulous application of the known methodology, to its significant
revision and adaptation to the specific project requirements and team experiences, through to devising
own vision and methodology based on industry experiences. Latter scenario is possible, but generally
better to be avoided – rarely your project will be a ‘green fields’ to such an extent.
Nevertheless, limited (possibly, temporarily) adoption of some ‘home grown’ architecture frameworks
does not diminish their value as contributors to our Architect’s Toolbox.

As an example of yet another complete systematic vision for the Enterprise Architecture framework
and Reference Model, refer to [WWW Bredemeyer] by practicing architects and educators Dana
Bredemeyer and Ruth Malan. Website generously provides original articles with architecture resources
for download.
Rest of the section is broadly based on the main architectural points from this source.
<<< Request permission for digest, possibly drawings >>>

Enterprise Architecture

Enterprise Architecture:
� Encompasses and relates constituent architectures:

o Application/Software Architecture
o Technical/IT Architecture (the common platform or shared infrastructure,

components, frameworks, tools)
o Information/Data Architecture
o Organization/Business Architecture

� Provides the vision and guiding principles that govern all of these architectures
� Addresses enterprise-level objectives like:

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 12 of 20

Practical SAFE © 2003

o Consistency and cohesion, integration, interoperability, security
o Flexibility to make, buy or outsource IT solutions
o Re-use across applications, product lines or product families

As we see, Enterprise Architecture defined in terms more general architecture concepts and views –
System Architecture, Software Architecture, Technical Architecture. This way we introduce high-level
taxonomy and vocabulary for the Enterprise Architecture.

System Architecture

A System is defined as a set of different elements so connected or related as to perform a unique
function not performable by elements alone. This implies that the whole is greater than the sum of the
parts, that is, the System has properties beyond those parts.

Software Architecture

We define our architectural models as a set of complementary interrelated views (possibly in different
orthogonal dimensions) and layers.

Software Architecture views:
� Conceptual Architecture. Focuses on identifying components and allocating responsibilities

to components. Provides decomposition of the system without delving into details. Consists of
the Architecture Diagram (without interfaces) and informal component specification for each
component. Provides useful vehicle for communicating the architecture to non-technical
audiences, such as management, marketing, and users

� Logical Architecture. Focuses on component interactions, connection mechanisms and
protocols. Adds precision to the Architecture Diagram by detailing interfaces and component
collaboration. Establishes contracts by which separate components and development streams
may progress relatively independent

� Execution Architecture. Assigns runtime component instances to processes, threads and
address spaces. Allocates physical resources. Shows process view and deployment view of the
physical system

And again, Software Architecture views along another dimension:
� Structural View. Consists of Architecture Diagram, Component and Interface Specifications.

Captures static view of architecture
� Behavioural View. Consists of Component Collaboration or Sequence Diagrams. Captures

timeliness and dynamic view of the system

Every view of the Software Architecture may be analysed to the certain depth of detail, corresponding
to the Software Architecture Layers:

� Meta-Architecture. Architectural vision, principles, styles, key concepts and guidelines.
Provides high-level constrains that strongly influence structure of the system and rules certain
structural choices out. Guides selection decisions and trade-offs

� Architecture. Components and relationships, static and dynamic views. Conceptual, Logical
and Execution Architectures, as described above

� Architecture Guidelines and Policies. Design patterns and policies, frameworks,
infrastructure and standards. Guides designers and engineers in creating designs that maintain
the integrity of the architecture

Technical Architecture

[WWW OpenGroup] defines Technical or IT Architecture in The Open Group Architecture Framework
(TOGAF) as formal description of the Information Technology system, organised in a way that
supports reasoning about the structural properties of the system.
IT Architecture defines the components or building blocks that make up an overall information system
within the technology constraints, and provides a plan from which products can be procured, and
systems developed, that will work together to implement the overall system.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 13 of 20

Practical SAFE © 2003

Software Architect’s Profession

Who Is the Software Architect?

One cannot learn acrobatics solely by reading the manual. In order to achieve reasonable proficiency in
acrobatics, you have to train hard, and to practice it, constantly. There are good acrobats, and there are
bad ones. You may not be a good acrobat yourself, but you surely can recognise one when you see him
or her. And, someone just is not cut out to become an acrobat at all.
This is true for any type of human activity that requires high level of schooling, commitment, attitude,
expertise, and talent – builder, sports person, programmer, teacher etc. Software Architecture is not an
exception in this respect.
Although, Software Architecture activities exhibit less immediately visible qualities than, say,
acrobatics. Possibly, it would be easier to pass for the Software Architect for some time, while not
being one.

We heard about impostors posing as brain surgeons. One would not go under their scalpel knowingly.
Given time and opportunity, they may well become very good brain surgeons indeed, but they are not
at the moment.
We would look for the proven track record of previous successes and credibility, before we entrust our
health to the medical practitioner. Why Software Architecture should be treated any different when we
entrust to it the livelihood of the whole core business of the Enterprise?

IT industry offers plethora of tags for the practitioners with broad expertise – Software Architect,
Software Engineer, Systems Architect, Systems Engineer, IT Solutions Architect, Application
Architect, Domain Architect etc. etc.
These notions are strongly related and overlap significantly, and constantly move in or out of fashion
in some pockets of industry.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 14 of 20

Practical SAFE © 2003

Figure 5.3. Overlapping Roles in Software Architecture

Probably, most generic and, at the same time, most abused term with IT connotations is System.
We can (and will) slice and dice the notion of System to components and layers, entities and
relationships, interfaces, inputs and outputs etc., but the most general and enduring definition of
System is this – System is anything that is worth considering. And, by anything, we do not necessarily
mean the material thing here.
Consequently, most generic terms to describe the IT professional, who is involved in various aspects of
Systems Engineering using IT, are Systems Engineer or Systems Architect.

Software Architecture may be viewed as part of the overarching Systems Engineering discipline.
However, Software Architecture looks closely into context in which actual Software runs – hardware,
networks, protocols, interfaces and other pieces of the puzzle that may be beyond the immediate
interest of the software programmer. This broad view on the Software Architecture makes it almost
indistinguishable in the IT-intensive field from the whole discipline of Systems Engineering.
And, you guessed this right - Software Architects are people who do Software Architecture.

There is long way from the bare computer chip and binary 0s and 1s, to the coarse-granular
components that perform meaningful function for the humans in the real world – from the IT models
on the micro-level of abstraction (in internal interworkings of our computer systems), to the macro-
level business components and frameworks (where we engage in actual interaction with the real world
we build computer systems for, i.e. where rubber hits the road, if you like).

We may have lost on a macro-level the precision and order that we praise ourselves for on the micro-
level.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 15 of 20

Systems Engineer
Enterprise Architect

Systems
Analyst

Software
Engineer

Product
Specialist

Domain
Architect

Information
Architect

Process &
Methodology

Specialist

Software Architect

© 2003 SAFE House

IT Architect

Technology
Specialist

Integration
Architect

Practical SAFE © 2003

Business’ perception may well be that we have lost the plot… It is high time to revert that perception.

Why Good Architecture is Important?

Good Architecture is the one that scores high on the matrix of Quality Measures defined earlier in the
book. We do not define in this section what makes architecture good. But we do want to focus on why
the good architecture is important.

Good Architecture enhances productivity. Good separation of concerns in architecture components and
interfaces enables parallel development, in separate streams of work, by separate teams, vendors or
outside contractors

Good Architecture contains costs. Re-use of expensive components, infrastructure, skills and
processes, reduced overall complexity – all directly translate into reduction of costs, to the point of
getting into the green zone of solution being financially feasible in the first place.

Good Architecture reduces risks. By making the successful delivery on time and within budget
predictable with high level of comfort, we remain in the control of the process and minimise
probability of unpleasant surprises at the time when business committed already, exposed to dangers of
failure and may not have enough available options to react. Also, success in partial solution does not
open the gaping hole somewhere on the bigger picture in your business context.

Good Architecture improves flexibility, resilience, adaptability. Changing technologies, changing
business requirements, updates and enhancements may quickly cause the ‘architecture rot’ when
architecture turns bad. Goodness of the Architecture must have its own lifespan during which business
should not feel the stench of the rotten architecture, until architecture revamped and improved in a
planned and orderly fashion.

Good Architecture improves manageability by easing maintenance, support and enhancements in the
overall system throughout its life cycle.

Good Architecture improves agility in responding to changing business needs in timely fashion and
within budget.

Good Architecture improves professional satisfaction and fosters better working environment and
teamwork.

Many costly and embarrassing failures, horror stories and disasters owe the great deal to the Bad
Architecture that was the manifestation, and the cause of the failure.

What Makes an Architect Good?

We understand by now that making the good Enterprise Architecture is hard, and requires knowledge
and skills in many disciplines.
So, ideally, who are these Super Humans we call Enterprise Architects? And they really are humans –
there will be no alternative here for the foreseeable future, fortunately (as there won’t be an ideal single
person – perfect Enterprise Architect either, only well-rounded at best, as we shall see).

Architect Competency Model

Dana Bredemeyer [WWW Bredemeyer] provided very insightful and convincing arguments by
presenting the Architect Competency Model, Action Guides for the Enterprise Architect, and the
refreshing overall architect’s approach called L/F/G Frame of Reference.
(‘L/F/G’ stands for Lead, Follow, Get Out of the Way – all of which necessary to realise the
architecture vision, to build the capable and focused team, and, sometimes, is just the right thing to do).
This section is largely based on Dana’s presentations.
<<< Request permission >>>

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 16 of 20

Practical SAFE © 2003

Dana Bredemeyer defines five primary roles played by the architect. For each role Dana defines “What
you KNOW”, “What you DO” and “What you ARE” as an architect.
Five roles, or “5 Hats of the Architect” are:

� Technology. You need a thorough knowledge of relevant technologies, your business’s
product domain and processes. The problems may not be well defined, unlike ones that
developers facing, often with unclear or conflicting objectives. The personal characteristics
really essential to success in this domain are a high tolerance for ambiguity and a lot of skill
working consistently at an abstract level

� Strategy. Solid understanding of your organization’s business strategy and rationale behind it
is the key. As a skilled technologist you create good architecture. As a skilled strategist, you
create the right architecture for your organization

� Leadership. Architecture team without leadership goes nowhere. A leader is required to infuse
the team with a common vision, and to motivate the core team and associated teams to do
their best work. This requires dedication and passion, a strong belief that you can lead the
effort and the desire to do so. You must see yourself, and other must see you, as a credible
leader

� Consulting. The actual users of architecture are development teams. While using architecture
may be the best overall approach for the organization, this is often not apparent to its users.
You are functioning here as a mentor and teacher. What really contributes to your success
here is to be truly committed to others’ success and to have a good understanding of change
management and how groups adopt new processes

� Organisational Politics. Architectures have many and diverse stakeholders. You really need
to understand business and personal objectives of key players, and get them personally
committed to the success of the architecture. This means listening, networking, articulating
and selling the vision, and doing all this continuously over the life of the project. The people
doing this well are extremely articulate and confident. They are resilient and driven, and they
are sensitive to where the real power is and how it flows. They look for and see the
organization behind the organization, and they use this insight to build and maintain support
for their projects

Figure 5.3 shows Kiviat, or spider diagram with roles of the Enterprise Architect, and how he or she
fares. Diagram was adapted from Dana Bredemeyer’s presentations, and originally focused on the ‘lead
architect’ competency. This competency model is applicable for the Enterprise Architect as well.
Enterprise Architect has to score high on every role. You may use this diagram for self-assessment to
see if you are well suited for the job.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 17 of 20

Practical SAFE © 2003

Figure 5.3. Enterprise Architect Competency

Taxonomy of Architects

Let’s take a somewhat light-hearted look at the vibrant community of Enterprise Architects, and
identify common archetypes that exist there.

Each Architect is a person of many talents, and quite capable of defying any simplistic labelling.
Reliable certification of the Enterprise Architect is on the wish list in IT industry. The more important
then is the ability of the Architect for the realistic, if not humorous, self-assessment.

Likely, the Architect, that you might come across in your project, falls into one or more of the
following categories or types (features are intentionally exaggerated):

� ‘Loose Cannon’. Has some expertise in some relevant areas. Knows most of the right words,
learns them quickly, but often uses them in wrong context or order, without any qualms.
Defensive and aggressive. Prepared to make hasty shortcuts. Has low level of tolerance to
perceived failings of others.

� ‘Guru’. Knowledgeable and experienced. Proud authority, Subject Matter Expert in
technology, application domain, or in the line of business. Afraid of making mistakes. Often
unable to promote and defend the right decision. If different solution was selected against his
preference (possibly, due to some overriding commercial considerations), expect to hear from
him/her ‘I told you so’ in case of any usual hiccup. There is always somebody else’s fault.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 18 of 20

Leadership

Technology Organizational
Politics

Strategy Consulting

Legend:

Poor candidate for Enterprise Architect

Good candidate for Enterprise Architect

Source: Bredemeyer

Practical SAFE © 2003

� ‘Rocket Scientist’. Perfectionist and the religious follower of the fundamental theory and
scientific rigour. See ‘Guru’, only with problems in keeping feet on the ground, in proposing
viable and feasible solutions, with acceptance of necessary practical compromises.

� ‘Talking Head’. Adept in the organisational politics. Usually harmless, if not helpful. Can
assist in the troubled project greatly by calming down the situation, and by bringing the good
old street-wise common sense.

� ‘Prince’. Prefers to ‘facilitate’ and ‘review’, rather than perform actual solution design and
implementation hands-on. Often out of the depth professionally, but maintains the
smokescreen. Can give a hard time to the external vendors of Professional Services, as their
options in managing the situation are limited.

� ‘Czar’, or ‘Warlord’. Arrogant and intolerant. See ‘Prince’, but more aggressive and
malignant. Demonstrates vastly different behaviour in managing the situation ‘up’ and ‘down’
the organisational hierarchy, as well as sideways to various stakeholders. Will not share
information voluntarily. Capable of passing someone else’s intellectual property for his own.

� ‘Seagull’. Usually, this type possesses superficial expertise, combined with high self-
appreciation and admirable survivability. Prefers short-term forays into project, before
tangible deliverables take shape. Covers himself (or herself) with voluminous paperwork, and
by properly following official guidelines, often without much substance. Makes a lot of noise
and leaves droppings everywhere. Quickly takes off to the new pastures before things get real
ugly.

� ‘Working Horse’, or ‘Rock’. Knowledgeable, result-oriented, and helpful all-rounder and
team player. Consistent contributor to the team deliverables. Capable promoter of adopted
architectural decisions to management, peers, and any other stakeholder. Does not buckle
under pressure, responds to it by increasing own performance (cheerfully, clenching the teeth,
or both) and making himself available to the team for help. Looks out for organisational
politics, but does not make it a main pre-occupation. Every project manager must have one.

� ‘Pillar’. See ‘Rock’, with greater leadership strengths. Top-notch professional, with highest
level of work ethics. Accumulated broad technical expertise through vast and diverse industry
experience in various technologies, methodologies, and roles. Technical expertise can get
rusty in places, but solid understanding of the technology principles is still there. Also
possesses the penetrating power and the leadership ability. Diffuses project pressures and
tensions before smoke turns to fire. Gets work done, and without making enemies along the
way. Privilege and pleasure to work with.

One might comment that most of these categories sound pretty negative. This does not mean that the
most of us Architects are bad, or belong to one category. We did not mean for you to take this
Taxonomy of Architects too seriously. On the other hand… Every good joke rings some truth. It is
much better for all concerned, if truth surfaces from the well-meaning benign joke.
You are half way there already if you know where you stand. If you recognise yourself in any of these
categories, not everything is lost�.

If we step further back, we might ask ourselves the question: ”What exactly is ‘work’ for a person who
is paid to think?” - as scribbled in the margins of the book by one of the industry luminaries, the
creator of Dilbert, who helps to bring the breath of fresh air in what we all do [Adams 1997].
It always pays to see a bigger picture, or forest for the trees, or to keep feet on the ground, or….
Enough already, you’ve got the idea.

Revolution and Evolution

Advances in Information Technology, and its wide spread adoption represent one of the most amazing
revolutions in technology and society in the last century.
However, qualitative leap in technology and society at large happened through gradual accumulation
of evolutionary breakthroughs and achievements in some pockets of technology.
What seems, or proclaimed to be a revolution in some highly specialised field, may look like a storm in
a teacup from a broader prospective. Or, upon closer inspection, may seem more like marketing ploy
with particular agenda.

Software and Enterprise Architecture comprises multitude of IT-intensive technologies and
methodologies in their application to the great variety of business and social human activities.

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 19 of 20

Practical SAFE © 2003

Makeup of business and social processes, and our understanding of them on a macro-level, does not
change as rapidly as technological advances in the narrower field.
Revolutionary developments in certain technologies will impact, but not necessarily in dramatic
revolutionary sense, the landscape of Software Architecture and Enterprise Architecture.

Software and Enterprise Architecture field will never be dull for its practitioners, but one should not
expect big surprises on a macro-level either.
Software Architecture, as a consolidating multi-discipline framework, provides (as the framework
should) a more persistent overarching vision, to some extent immune to specific technological
advances.

Software Architects will keenly follow revolutionary advances in technology, methodology, and
products, and find the rightful place for these advances in the overall scheme of things.
As soon as this informed and balanced vision is achieved, Software Architect is in position to devise
good, fit-for-purpose, feasible, minimum-risk, flexible, resilient to change and ‘future-proof’
recommendations for the Enterprise Architecture.

<<< … >>>

Boris Monin m1_Chapter05-v2.0.doc – Last updated 30 December 2002 Page 20 of 20

