
Practical SAFE © 2003

Table of Contents for Chapter 7

TABLE OF CONTENTS FOR CHAPTER 7..1

<<< … >>>..2

PART 2. ARCHITECT’S TOOLBOX - ‘BIRD’S VIEW OF THE TERRAIN’.................................2

CHAPTER 7. METHODOLOGIES AND TECHNIQUES..2
Modular and Structured – ‘ancient history?’..3
Object-Oriented Methodology...5
Unified Modelling Language (UML)...8

UML History..8
UML Model Elements, Notation and Semantics...10
UML Diagrams..12

Rational Unified Process (RUP)...16
eXtreme Programming (XP)..17
Agile Modelling (AM)..18
Capability Maturity Model Integration (CMMI)...20
Patterns and Frameworks.. 22

<<< … >>>..23

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 1 of 23

Practical SAFE © 2003

<<< … >>>

Part 2. Architect’s Toolbox - ‘bird’s view of the terrain’

Imagine scenario – you are a CIO or the Project Manager, and you’ve got a couple of techos from your
team in the boardroom for a vital technical discussion. You are responsible for the delivery to business
of the large mission-critical application on time, on budget and to the business satisfaction. Your seat is
on the line and you have to make some hard and fast technical decisions. You are not really an expert
IT Architect or Software Engineer, and do not have to be.
Your techos locked in a technical argument, spitting unknown to you TLAs (Three Letter Acronyms),
and even FLAs, at will. You are loosing the track of discussion. You resort to carefully watching their
facial expressions and struggling to maintain a meaningful expression of your own. Would not it be
great to catch the TLA and throw it right back at them?

Or, there is another scenario. You are the IT Solution Architect responsible for putting together the
large and complex application. This application cuts across various technologies and products. You
know your stuff and you’ve got a track record to prove it. It is just that there are some technologies and
products that you did not come across before.
No problem whatsoever. You have to pick it up quickly, as you’ve done it many times before
throughout your career. Let me just find a concise and to the point reference for you.

Or, there is yet another scenario for you. You are the student, or the fresh starter in this industry or in
particular technology pocket. You need a practical guide to get you going quickly.

IT Architect needs to be aware of multitude of technologies, methodologies and products. And this
field is always a moving target. You need years and years of hard learning and sweaty experience (and
at times even bloody experience). You cannot acquire such valuable knowledge and skills for nothing,
without doing it tough.

You did not really think that someone could give it to you on a plate, or in a few hundred of pages of a
reference book, did you? It would be preposterous to think that all major technologies may be covered
in a brief summary. Don’t be ridiculous and get over it… What? …Well, OK. As you wish... Only
because you insist…

In this part, we peek into the IT Architect’s toolbox and make a stock take of his or her tools of trade –
methodologies and techniques, standards and protocols, platforms and technologies. This is a 10,000
feet helicopter view to help you with the big picture.

Chapter 7. Methodologies and Techniques

This chapter takes a broad swipe at concepts and approaches that get you organised in a search of the
best solution.
We need common guidelines for devising and presenting our designs. Also, we need to get the team
organised and arm them with common notation and semantics of design best practices. This way we
can produce, capture and document our designs, and communicate it to our peers.
In other words, we concentrate in this chapter on methodologies, techniques and major patterns that are
applicable to the Enterprise Architect.

Chapter explains fundamentals of some approaches and methodologies that (in author’s mind at any
rate) captured significant market and mind share of software developers and integrators. This is not a
complete stock take of the software methodology landscape.
For example, chapter does not cover such important approaches as OPEN Process, Object-Oriented
Software Process (OOSP, do not confuse with the object-orientation in general – we do explain that),
Catalysis (Desmond D’Souza), Dynamic System Development Method (DSDM), Crystal
Methodologies (Alistair Cockburn), SCRUM (Jeff Sutherland), Adaptive Software Development (Jim
Highsmith), Feature-Driven Development (FDD, Jeff De Luca and Peter Coad), Enterprise Unified
Process (EUP), Navigator.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 2 of 23

Practical SAFE © 2003

Modular and Structured – ‘ancient history?’

Methodologies and techniques in the Art of the Software Creation have undergone rapid evolution.
Software practitioners, who joined our vibrant IT community this millennium, sometimes under-
appreciate (to say the least) the challenges and achievements of those who did IT before us and brought
us where we are now.
However, there is knowledge to absorb and there are lessons to learn – for the better understanding of
modern challenges in IT.

First programmers and software designers were so overwhelmed by the sheer excitement of making
computer do the work in the first place, that IT quickly reached the point where convoluted code and
unruly software discredited IT all too often.
Business demanded to make the software development process and its deliverables manageable,
disciplined, rigorous and of predictable high quality.

With IT penetrating the vital fabric of business and society, program bugs and programmers’ mischief
was not a laughing matter anymore (well, at least not every time).

With every new project, programmers created universes to their liking. Often only the creator could
understand the program code.
With complex logic, control flow, mysterious variables and web of branches, program code reminded
‘spaghetti’. If program worked somehow, nerd was forgiven and grudgingly tolerated, feared and
envied.
IT industry was heading for its first crisis and required a good soul-searching to win the trust of the
business. Sounds farfetched?

Consider this loop statement in Fortran:

DO 18 I=1,4

Imagine likely situation when programmer (or punch card typist who does not know Fortran and reads
from the programmer’s scribbles) omitted comma or typed ‘dot’ instead:

DO 18 I=1.4

‘Luckily’, Fortran compiler does not have reserved keywords, and ignores spaces as well. If variable
was not explicitly declared, first mention of the new variable is considered to be its declaration. So, we
get an innocent assignment statement here instead of the loop header:

DO18I=1.4

You say, tough luck? We say, this error in the Fortran program of the flight control software caused
disaster in the first launch of the US spacecraft to Venus [Mayers 1976].

Computer scientists, mathematicians and software methodologists embarked to introduce rigour in
programming practices and software design.

Ideas of Structured Programming were succinctly formulated by Dijkstra in [Dijkstra 1968a].
However, foundation for the Structured Programming was built in earlier works by Bohm and Jacopini
[Bohm 1965] – they proved the theorem of structuring.
This theorem established that logical structure of any complexity could be build from the small number
of basic elementary structures of the control flow. And these basic logical structures were actually
identified.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 3 of 23

Practical SAFE © 2003

Figure 7.1. Basic Logical Structures of the Program

Note that each basic structure has one entry point and one exit point.
Statement may be a simple assignment, subroutine or function call, input-output statement or any other
basic logical structure. This way, through the nesting and recursion, any complex program logic may
be constructed.

Minimal, theoretically sufficient set of basic logical structures imposed unnecessary constraints on the
programmer’s freedom of expression.
Some pragmatic additional elementary logical building blocks were introduced.

Figure 7.2. Additional Logical Structures of the Program

As a side effect of bringing the Structured Programming into mainstream software development
practices, lively debacle on the role and evils of the GOTO statement came about.

GOTO statement caused program to skip the ‘normal’ control flow and for address pointer to jump
directly into some nominated place in the program (usually explicitly denoted by the label assigned to
some other statement).
Nothing prevented you from jumping out of the loop, inside the loop or inside the conditional clause.
GOTO statement was singled out as a major culprit in producing the incomprehensible ‘spaghetti
code’. Drawbacks and benefits of the GOTO statement were the topic of heated debates, eg. see
[Dijkstra 1968b].
New programming languages trumpeted absence of the GOTO statement as a major marketing point.
Those that still allowed GOTO - tried to bury this feature deep in the documentation, in shame.

If you do not have to think much about the Structured Programming while writing your code now –
this is because modern programming languages to the great extent enforce the Structured

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 4 of 23

DO-UNTIL
Loop

Cond.
true

SWITCH

. . .

Simple Statement
or Sequence

IF-THEN-ELSE
Conditional Statement

IF-THEN
Conditional Statement

DO-WHILE
Loop

Cond. Cond. Cond.Statement true true true

Practical SAFE © 2003

Programming for you, and force you to do the right thing. Structured Programming features are built-
in into the modern programming languages.
This is not to say that modern programmer cannot find a way of writing the convoluted and poorly
structured code. There is no foolproof system that is completely immune from the fool (or, if you like,
the one, way too clever for his or her own good). However, good development environment helps us to
manage the situation better.

Structured Programming deals with the monolithic chunk of the program source code – in the same
address space or the same process, with all variables visible throughout the single program in question.
Obviously, Structured Programming is limited in scope to every single chunk of the source code.
Project rarely consists of one single program, rather of multitude of collaborating programs or modules.
This is where Modular Programming techniques close the gap.

Modular Programming provides guidelines for designing your software as a set of manageable
modules.
Modules are (usually and preferably) small, about 50 lines of code, programs that implement some
clearly defined business function. Bigger function can be implemented by calling several smaller
functions in order – as per Structured Programming.
Modules are implemented as sub-routines with interfaces and rules of how the module can be invoked.

Still, a lot was left to the programmer’s discretion and his or her diligence in following the wise
guidelines of the program design.
For example – program designer had to ensure that the module communicates with the calling routine
through the input and output parameters in the CALL statement for this module. Other options for the
module invocation could be – passing parameters through some persistent stored values, or visible
global variables – a big no-no as far as Modular Programming concerned.
If the CALL-interface is simple and stable, we can easily test, improve or replace the module, without
the adverse impact on its calling environment.
Modules may be packaged and shipped as a library of programs integrated into many different projects.

Does this sound to you like insulation, encapsulation, separation of concerns and re-use? It should,
because Modular Programming is exactly that.
Despite what you may have heard or read, Object-Oriented Methodology (with the due respect and
recognition of all the innovations that yet to be mentioned here) is less of the revolution and more of
the evolution for those who went through the motions of Modular Programming.

Object-Oriented Methodology

Computing abstractions progressed through several distinct stages:
� Bare hardware with the binary set of instructions that controls it. Assembler languages

introduced human-readable mnemonic to binary operations and data – strictly to keep human
(the weakest link in the computerised world) happy

� Low-level programming that is just a little bit more human-friendly – second generation
programming languages and methodologies

� Higher level programming notation that allows us to describe complex algorithms on some
elementary and aggregated data types – still far cry from the level of abstraction in the real-
life processes

Next natural stage in the evolution of computing notation inevitably delivered paradigm of higher level
of abstraction, closer to the human mindset and human natural way of thinking.
This progression became possible due to the advancements in computer technology and growing
human appetites for the more natural toolset, without levels of indirection using somewhat alien to
human mind information models.

It came as no surprise, as we always wanted software to evolve towards the higher level of abstraction,
closer to the real-world entities. We always wanted software artefacts to resemble the real life closer,
so that we could model, monitor and control real-life processes by manipulating entities and processes
that are better understood.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 5 of 23

Practical SAFE © 2003

Removal of levels of indirection in the software paradigm will reduce complexity in the software
system.

Object-Oriented paradigm is a new way of thinking when we view software system as a universe of
interacting autonomous agents.
Every agent performs some tasks, communicates with other agents through the set of messages and
may possess some memory about itself, other agents, about communications with other agents and the
surrounding environment.
Collaborations of agents deliver the functionality required of the software system.

This agent is The Anthropomorphic (or human-like) Object – fundamental notion and the starting point
in the Object-Oriented Methodology.

Object represents concept or entity from the real world. Object is the unit of encapsulation for both
state and behaviour.

Each Object is a unique instance and has its own distinct identity.
State of the Object represented by properties (attributes) and their values.

Behaviour of the Object is defined as a set of methods (procedures, operations, messages) that perform
its responsibilities.
External behaviour of the Object is defined by a set of messages that Object exposes to the outside
world – known as Object’s public interface (or contract, protocol, specification). Objects exchange
messages by invoking methods on each other.

Notion of type in conventional 3GL programming languages has undergone a major evolution in the
Object-Oriented paradigm.
Class is a higher abstraction that defines a type, or shape if you like, or public interface, or state and
behaviour of the Object instance.

Main source of confusion for the novice in the object-orientation is in the losing track of what level of
abstraction the current model is on – Class or the Object instance.
Object is the entity itself, or model. Class is the information about the type of possibly many different
Objects, or meta-model (meta means data about data).

Make sure you always know which level of abstraction you are on (Class or Object) – and you can’t go
too wrong. Accordingly, any diagram of your object-oriented design will be either Object or Class
diagram – have both, but do not mix two.
Furthermore, by level of abstraction we often mean level of detail, fidelity or granularity of our
models. We distinguish coarse-granular and fine-granular models – with latter being an extension,
drill-down elaboration of the former. Do not mix different levels of detail on your diagrams - ‘divide
and conquer’.

As you can see by now, Object-Orientation is a complete philosophy or a whole new vision of the
world. Out of vast literature on object-orientation, some of the most often referred titles are [Booch
1994] [Meyer 1997].
Object-Oriented Methodology leaves the object-oriented designer with a ‘minor’ task (we wish) of
identifying types of entities (Classes) and instances (Objects) from the real world, their behaviours and
collaborations between them.

Analysis of the information domain and identifying Classes in your object-oriented model is the
creative human activity that cannot be automated.
Object-oriented methodologies suggest the use of CRC (Class, Responsibilities, Collaborators) Cards
to facilitate the process of initial analysis. CRC Cards were first proposed in RDD (Responsibility-
Driven Design, Rebecca Wirfs-Brock).
In a brainstorming session, team fills one CRC Card for each potential Class. CRC Card defines the
class name, its behaviours or responsibilities and its relationships with other classes.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 6 of 23

Practical SAFE © 2003

Figure 7.3. CRC Card Layout

If we look with the magnifying glass at the collaborations between Objects or between Classes, we find
that any collaboration is the Client-Server relationship.
Every Object in collaboration is either Client or Server. Object may play role of the Client in some
collaborations, and the Server in other.
When an Object requests a task to be performed by another Object (sends the message, invokes method
on that Object), the requesting Object is known as the Client, and the performing Object is known as
the Server.

Figure 7.4. Client-Server relationships between Objects

Relationships between Objects and between Classes in the Object-Oriented Methodology may have
different semantics (meaning).

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 7 of 23

Class

Responsibilities Collaborators

Client Server

Object BObject A

methodDoSomething()
message

Practical SAFE © 2003

Main types of relationships that need to be understood in order to capture the essence of object-
orientation are:

� Is kind of or is-a, that denotes relationship of Generalisation, or Specialisation, or Inheritance
� Is part of or has-a, that denotes relationship of Aggregation, or Containment, or Composition

Deficiencies in the object-oriented design in most cases can be traced back to the confusion between
‘kind of’ type relationships (generalisation, specialisation, inheritance) and ‘part of’ containment
relationships (aggregation, composition), and consistency in level of detail in your model.

Three pillars or major innovations and differentiating features of the Object-Oriented Methodology are
Inheritance, Encapsulation and Polymorphism.

In Inheritance relationship, a sub-class ‘inherits’ from the super-class. A sub-class inherits protocol,
methods and instance variables from its super-class. A sub-class can override inherited features of the
public interface, and can provide additional features.
Inheritance relationships may create an inheritance hierarchy of related classes.

Encapsulation serves to separate a public (contractual) interface of some abstraction and its
implementation. This way we build complex architectures from components by connecting them
through their public interfaces. We can replace or improve the implementation of component without
an impact on the rest of architecture.

Polymorphism is the object-oriented concept borrowed from the type theory wherein a programming
variable can store values of different types or function can operate over different signatures.
Polymorphism is closely related to the late binding when exact type or method not determined until
execution.
In fact, there is good litmus test for Polymorphism: the existence in the object-oriented language of a
switch statement that selects an action based upon the type of the object is often a warning sign that the
developer has failed to apply polymorphic behaviour effectively [Booch 1994].

Unified Modelling Language (UML)

UML History

Object-oriented modelling languages began to appear in mid-1970s as various methodologists
experimented with different approaches to object-oriented analysis and design. Several other
techniques influenced these languages, including Entity-Relationship data modelling (Ted Codd et al)
and the Specification and Description Language (SDL, circa 1976, CCITT).
The number of identified modelling languages increased to more than 50 by 1994, fuelling ‘method
wars’ and user dissatisfaction with any particular object method. Market matured for convergence of
methods and complementing of methods with each other strengths.

The development of UML started in October 1994 when Grady Booch and Jim Rumbaugh joined
forces at Rational Software Corporation and began their work on unifying the Booch and OMT (Object
Modelling Technique) methods.
Despite notable differences in notation (eg, Booch method represented classes in the shape of clouds,
against tastes and better judgement of many in the developer community), semantics and scope of both
methods were strikingly similar.
A draft version 0.8 of the Unified Method, as it was then called, was released in October of 1995
[OMG UML 2001].
Also in 1995, Ivar Jacobson and his Objectory Company joined Rational and this unification effort
with OOSE (Object-Oriented Software Engineering) method. OOSE contributed in what is known now
as RUP (Rational Unified Process).

See Figure 7.5 for the genesis of UML. Figure emphasises that there are more influences to UML that
we need to acknowledge, in addition to major contributions from Booch, OMT and OOSE methods.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 8 of 23

Practical SAFE © 2003

Some other notable contributions (either initially or at the later stage and mentioned here in no
particular order) were provided by such influences as RDD (Responsibility-Driven Design, Rebecca
Wirfs-Brock), ROOM (Real-Time Object-Oriented Method, Bran Selic), SOMA (Semantic Object
Modelling Approach, Ian Graham), Shlaer-Mellor, Coad (Peter Coad and Ed Yourdon), Martin-Odell,
OPEN (Brian Henderson-Sellers, Ian Graham), Fusion (Coleman), BON (Business Object Notation
with Eiffel, Walden and Nerson, Bertrand Meyer), OML (Don Firesmith), Syntropy (Cook and
Daniels), Catalysis (Desmond D’Souza and Alan Wills).

Figure 7.5. UML Evolution

In 1996, OMG issued Request For Proposal (RFP) and Rational established UML Partners Consortium
with several organizations willing to dedicate resources towards a strong UML definition. Together the
partners produced the revised UML v1.1 response that improved the clarity of UML and incorporated
contributions from the new partners.
The UML Partners contributed a variety of expert perspectives, including, but not limited to, the
following: OMG and RM-ODP technology perspectives, business modelling, constraint language, state
machine semantics, types, interfaces, components, collaborations, refinement, frameworks,
distribution, and metamodel.

The UML can be extended further without redefining the UML core. The UML, in its current form, is
expected to be the basis for many tools [OMG UML 2001].

UML Model Elements, Notation and Semantics

OMG UML Specification [OMG UML 2001] is the official comprehensive primary source of
information on UML.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 9 of 23

Booch
(Grady Booch)

OMT
Object Modeling Technique

(Jim Rumbaugh)

OOSE
Object-Oriented

Software Engineering
(Ivar Jacobson, Objectory)

UML
Unified Modeling Language

(v0.91, 1996, Rational)

UML
(v1.1, 1997, OMG)

UML
(v1.4, 2001)

UML
(v2.0, 2002)

. . .

Practical SAFE © 2003

Unfortunately, far from being a textbook or tutorial, UML Specification is not a bedtime reading for
faint-hearted. You shall turn to [OMG UML 2001] for reference, but rely on many of more gentle and
pragmatic sources like [Booch 1999].
Also, help information of UML tools (like Rational Rose, Visio, Together) will assist you in finding
your way around UML.

In the end of the day, UML is just a modelling language – it does not relieve you from the necessity of
grasping core concepts of object-oriented analysis and design. Tool can help you in drawing nice-
looking models, but they won’t worth a paper (provided you were so adventurous as to print your
models), if you did not capture proper semantics of the application in the modelling language.

You start modelling of the information domain by identifying entities (together with their major
behaviours and collaborations) in the real world that you will be dealing with in your application.
These entities will become Model Elements.

As a language, UML defines some Syntax and Semantics.

UML Notation Guide defines Model Elements and how to visualise Relationships between them, i.e.
UML Syntax.

UML Semantics (or meaning) defines the formal rigorous UML Language Architecture as a four-layer
Metamodel Architecture [OMG UML 2001].
Four layers in the UML Language Architecture are:

� Meta-metamodel – defines the language for specifying metamodels. Aligned with OMG
Meta-Object Facility (MOF)

� Metamodel – defines the language for specifying models. Operates with such artefacts as
Class, Attribute, Operation and Component. Actually, in layman terms, this is the UML itself
that we love and learn

� Model – defines a language to describe an information domain for our application. These are
models that we design

� User Objects – defines a specific information domain. Operates with object instances

Enterprise Architects out there in trenches are usually concerned with last three layers. However, it is
good to know the rigour that has been applied to the foundation of UML, and UML’s potential to live
up to high expectations in the near future.

It is like with any natural or very familiar activity, walking for example. We do not think about moving
every muscle when putting one leg in front of another every time. Imagine caterpillar suddenly has to
think about each of her 40 legs when moving. She would probably die of hunger on the spot where this
thought first hit her…
So, do not get too concerned with all intricacies under the hood that were exposed to you in the UML
Specification. Understanding the concepts explained here is as far as you most likely need to go.

Figure 7.6 depicts some UML Model Elements that you will use to visualise entities of your
information domain in your models.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 10 of 23

Practical SAFE © 2003

Figure 7.6. UML Model Elements

Figure 7.7 defines main types of UML Relationships between Model Elements in your model.

Figure 7.7. UML Relationships

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 11 of 23

Note

Class
attribute : Type

operation()

object : Class

attribute = XYZ Actor

UseCase

Package

Interface

Component

Node

Visual stereotypes for classes

<<entity>> <<boundary>> <<controller>>

<

Grouping of Model Elements

Run-time Physical Entity

Modular Part of the System

Interface - set of Operations
that define Behavior of an Element

Class Object Instance

Dependency – directed relationship from client to supplier,
stating that client is dependent on supplier

Association – relationship between classes
(may have adornments to show properties of association and its ends –
name, role, cardinality/multiplicity, navigability, visibility etc.)

Aggregation - “has-a” or whole/part relationship
(weak, “by-reference” – destroying whole does not destroy parts)

Composition - strong form of Aggregation - containment
(“by-value” – parts are destroyed along with the whole)

Generalisation (or specialisation) –
Inheritance “is-a” relationship

Realisation - implementation of a specification

Practical SAFE © 2003

UML Relationships may have complex semantics that should be captured through many properties or
adornments of Relationships.
Figure 7.8 describes some properties of UML Relationships and their notation or graphical
representation. Numbers denote cardinality or multiplicity of Model Elements in Relationships.

Figure 7.8. UML Association Adornments

UML Diagrams

The choice of what models and diagrams one creates has a profound influence upon how a problem is
attacked and how a corresponding solution is shaped…Because of this [OMG UML 2001]:

� Every complex system is best approached through a small set of nearly independent views of
a model. No single view is sufficient

� Every model may be expressed at different levels of fidelity
� The best models are connected to reality

The last point here is to remind us what we are doing in first place, just in case we forgot. Other points
capture the very essence of the Software Architecture models.

UML canonises list of recommended model views or diagrams that modeller uses.
Developers often use different diagrams or name them differently. Apart from being powerful analysis
and design tool, introduction of the unified vocabulary and adherence to it is an additional bonus of
UML in building the Babylon towers of software architectures.

Figure 7.9 describes views of the models or diagrams that are defined in [OMG UML 2001].

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 12 of 23

ClassA ClassB
association_name

role_of_A role_of_B

1..*0..1

Notation
(not all adornments shown)

Example

SoccerTeam Person
< plays_for

team player
{ordered}

110..1

© 2003 SAFE House

Practical SAFE © 2003

These eight types of diagrams with different levels of detail and abstraction will capture your Software
Architecture design in the UML model. Due to specifics of application domain and target software
architecture, and often at your discretion, not all diagrams and not every fidelity level will be required
in every project.

Figure 7.9. UML Diagrams, Canonical Taxonomy

We provide examples of some more common UML diagrams below.

Use Case diagram helps document functional requirements in the form of the real life scenario. Use
Case defines some business process and identifies Actors involved. Each high-level Use Case may be
drilled down on separate diagrams if required.

Figure 7.10 depicts Use Cases and Actors in the fictitious Soccer Team system. We introduced three
Actors – Manager, Coach and Player. Obviously, our system is not modelled on the English Premier
League – our Manager is a pretty hands-off type of guy and delegates all responsibilities of running the
team to the Coach.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 13 of 23

UML Diagrams
(Model Views)

Use Case
Diagram

Requirements

Class
Diagram

Statechart
Diagram

Activity
Diagram

Sequence
Diagram

Collaboration
Diagram

Component
Diagram

Deployment
Diagram

Static
Structure

Dynamic
Behaviour

Interaction

Implementation

Practical SAFE © 2003

Figure 7.10. UML Use Case Diagram

Figure 7.11 shows a fragment of the Class Diagram. High-level Class Diagram may depict Classes as
simple rectangle, without compartments for attributes, operations, exceptions etc. (as shown on the
blow-out for the Person class).

SoccerTeam class is a ‘kind of’ SportTeam class. Hence, SoccerTeam inherits from (or sub-type of) the
SportTeam class.

Instances of Player class and Coach class are ‘part of’ the SoccerTeam class. This relationship or
association is depicted as Aggregation. Every instance of the Player class has a number in the
SoccerTeam – diagram captures this fact in the adornment {ordered} for the Player in the association
with the SoccerTeam.

Player and Coach are species of (or ‘kind of’) the type Person. However, we’ve chosen not to enforce
inheritance here. One explanation could be that our system does not leverage behaviours of players and
coaches as persons sufficiently enough to warrant the use of inheritance, but rather relies on some
attributes of players as persons. Another explanation – we just wanted to show you more types of
associations in action, and kind of decisions that object-oriented designer can make and justify.
We say, Person and Coach use or depend on the class Person.
Detailed Class Diagram for the Player class shows attribute persDetail of type Person. This way we
avoided inheritance by including the characteristics of the Player as a Person into the Player class
itself.
<<< Class Diagram for the Player class is not shown in this version due to conversion hickups >>>

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 14 of 23

SoccerTeam

Pick Name & Colors

Manager

Coach

Player

Hire Coach

Enlist Players

Enter Competition

Train Hard

Have Fun

© 2003 SAFE House

Practical SAFE © 2003

Figure 7.11. UML Class Diagram

Figure 7.12 provides Sequence Diagram for the Use Case “Create Season Fixture”.
Use Case diagram for the SoccerTeam application provided a higher-level view and did not show this
use case. However, we assume that detailed Use Case design identified Use Case “Create Season
Fixture” (among few others) when we drilled down Use Case “Enter Competition”.
‘Swimming line’ defines the actor (or participating entity, or stakeholder, or object) in the Use Case
process. Object instance initiates the next step in the sequence by sending the message to (by invoking
the operation on) another object. These operations must be defined in the class. UML tool like
Rational Rose or Visio will spot the inconsistency in your UML design if you’ve made a mistake.
Timeline in the Sequence Diagram flows from the top down.

<<< Sequence Diagram for the Create Season Fixture use case is not shown in this version due to
conversion hickups >>>

<<< Figure goes here… >>>

Figure 7.12. UML Sequence Diagram

Figure 7.13 gives an example of the Deployment Diagram with physical configuration details of your
application. This view allows you to approach the network connectivity issues, partitioning your
application on different server boxes, installation, capacity planning, licensing costs, business
continuity and security.
Deployment Diagram shows a 3-tier architecture. Business logic layer is implemented on J2EE
Application Server WebSphere. Two boxes have been deployed running three instances of WebSphere.

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 15 of 23

SoccerTeam Player
< plays_for

{ordered}

110..1

SportTeam Person

Coach

boss

slave

0..1

© 2003 SAFE House

Practical SAFE © 2003

Figure 7.13. UML Deployment Diagram

Your project documentation will contain set of such diagrams covering all necessary entities,
relationships and processes from different angles (views) to the required level of detail.

UML is a complex and evolving modelling language. Software Architects should see a lot of comfort
and consolation in the fact that UML has reached a degree of maturity.

Complexity of the modelling language is well justified by our intent to capture and manage entities,
relationships and processes in the infinitely complex real world.
However, 20% of UML features shall suffice in 80% of the real-life challenges.

No powerful modelling tool will ensure that you do not fall into trap of ‘analysis paralysis’. Your
model should be as complex and detailed as required, but not more.

Rational Unified Process (RUP)

Rational Unified Process emphasises iterative and incremental nature of the object-oriented
development.

Figure 7.14 presents a lifecycle of the Unified Process made up of four phases and nine process
disciplines.
<<< Request permission >>>

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 16 of 23

:WebServer

:Apache

Serv1:AppServer

s1:WebSphere

Serv2:AppServer

s3:WebSphere

s2:WebSphere:DBServer

<<database>>
:Oracle

© 2003 SAFE House

Practical SAFE © 2003

Figure 7.14. Rational Unified Process Lifecycle

Phases of the RUP are:
� Inception – definition of the project scope and the business case
� Elaboration – detailed analysis of the problem and architecture design
� Construction – detailed design and development
� Transition – implementation of the system

eXtreme Programming (XP)

Extreme Programming (XP) approach has been brought to life in direct response to inadequacies of
‘heavy’ or ‘monumental’ (Jim Highsmith) methodologies in the multitude of real-life projects.

Let’s hear from Kent Beck, the man himself: “XP is a lightweight methodology for small-to-medium-
sized teams developing software in the face of vague or rapidly changing requirements”.
And again, “XP is a lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to
develop software” [Beck 2000].

XP has its roots in Smalltalk development environment. XP was taking shape in the late 1980’s
through refinement on numerous projects. One project especially provided a turning point in XP
entering the mainstream – C3 payroll project at Chrysler.
XP was conceived and successfully promoted to the wider community by Kent Beck and Ward
Cunningham. In essence, XP software development approach is adaptive (as opposed to predictive in
heavy methodologies) and people-oriented.

Four pillars of XP methodology: Communication, Feedback, Simplicity and Courage. From this
foundation, XP promotes several practices that XP projects should follow. Surprisingly, most of these
practices are old as a world, yet often forgotten. Some practices are not so conventional and challenge
many stale pre-conceptions of the software development.

XP emphasises incremental ubiquitous testing that is an intrinsic part of the coding process. Code
becomes a primary source for documentation, and XP relaxed demands on documentation saved a lot
of trees but also raised a lot of eyebrows. Cutting code is not a solitary process either – program

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 17 of 23

Phases
Process Disciplines

Iterations

Supporting Disciplines

Project Mgmt
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Project Mgmt
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Practical SAFE © 2003

developers are working in pairs at the same terminal. Team constantly talks to the business owners who
became a part of the development team. Incremental deliverables in a small manageable iteration do
not provide any surprises. As a result, problems surface at the earliest possible moment, when fixing
them does not cost an arm and a leg yet, and there is no temptation to cover them up.
Changes are most welcome as they ensure the deliverable to be as close to the true business
requirements as possible.

XP methodology goes a long way toward identifying and meeting the true business requirements.
This approach all but eliminates the possibility for the very familiar to IT practitioner situation when
business requirements are not properly captured (provided we, together with business, are able to
articulate them with sufficient rigour in the first place) and not satisfied. Requirements themselves will
likely present a moving target in a very dynamic business environment.
In other words, XP approach to software development helps us to avoid the dreaded situation on the
late stage of the project that was observed by the inspiration of ours, the great Dilbert: “It’s just what
we asked for! But it’s not what we want”.

Agile Modelling (AM)

Methodology embodies best practices and guidelines for the software development. Methodology is a
‘yellow brick road’ that supposed to bring us to the goals of our project.
How you reconcile these expectations for the methodology with the fact that every project is bound to
be somewhat specific in a somewhat different context? How you adapt the heavyweight methodology
to the fast-changing business environment so it responds quickly, does not live the life of its own, does
not spin the wheels and does not create scary black hole for the resources and money, without the
tangible feedback to the business?

IT practitioners themselves point to ‘the misguided efforts of theoreticians, the decades of cultural
entropy within information technology departments, the marketing rhetoric of software development
tools companies’ [Ambler 2001b].
Crisis in the software methodologies and their application have reached the point when there is need
‘to restore credibility to the world’.

[AgileAlliance] tells us the true story that happened with two of its founding members:
Ken Achwaber (a proponent of SCRUM) told of his days of selling tools to automate comprehensive,
‘heavy’ methodologies. Impressed by the responsiveness of Ken’s company, Jeff Sutherland (SCRUM)
asked him which of these heavy methodologies he used internally for development. “I still remember
the look on Jeff’s face,” Ken remarked, “when I told him, ‘None – if we used any of them, we’d be out
of business!”

On February 2001, at the ski resort lodge in Wasatch Mountains of Utah, 17 people (all recognised
methodology gurus) met to talk, relax and to find the common ground.
What emerged was the Agile Software Development Alliance [AgileAlliance] [WWW,
AgileModelling].
This ‘gathering of organisational anarchists’ produced a Manifesto for Agile Software Development –
signed by all participants.

By contrasting the new approach with ‘heavyweight’ methodologies, we could fall into trap of calling
it a ‘lightweight’ – which implies cutting corners, creating somewhat abridged terse version of
complete, rigorous and ‘correct’ methodology. These connotations of adjective ‘light’ would miss the
point and would be completely misleading.
Participants coined term ‘agile’ – to highlight a no-nonsense nature of the new approach, its back-to-
basics spirit, to put ability for the responsiveness to the business needs first, where it belongs.

Let’s quote from The Agile Manifesto [AgileAlliance]. <<<Request permission>>>

The Agile Manifesto Purpose:

“We are uncovering better ways of developing software by doing it and helping others do it. We value:
� Individuals and interactions over processes and tools

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 18 of 23

Practical SAFE © 2003

� Working software over comprehensive documentation
� Customer collaboration over contract negotiation
� Responding to change over following a plan

That is, while we value the items on the right, we value the items on the left more.”

The Agile Manifesto Principles:

“We follow the following principles:
� Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software
� Welcome changing requirements, even late in development. Agile processes harness change

for the customer’s competitive advantage
� Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to a shorter timescale
� Business people and developers work together daily throughout the project
� Build project around motivated individuals. Give them the environment and support they

need, and trust them to get the job done
� The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation
� Working software is primary measure of progress
� Agile processes promote sustainable development. The sponsors, developers and users should

be able to maintain a constant pace indefinitely
� Continuous attention to technical excellence and good design enhances agility
� Simplicity – the art of maximizing the amount of work not done – is essential
� The best architectures, requirements and designs emerge from self-organizing teams
� At regular intervals, the team reflects on how to become more effective, then tunes and adjusts

its behaviour accordingly“

Although not a revolution on its own (eg. XP is an agile process), Agile Modelling honestly deals with
deficiencies of ‘heavyweight’ methodologies and does shatter some well-entrenched dogmas.

All too often, while building complex architectures in changing environment, we failed to see forest
behind the trees.
Documentation does not automatically mean a good quality design; requirements refuse to get frozen at
will; frozen design too may become irrelevant as our growing understanding gets captured in the
software, but not in the design.

‘Heavy’ methodologies aimed to streamline software development process, to level it and make its
quality more manageable and predictable, less dependable on whims of computer geeks of old – a very
noble goal indeed.
Unfortunately, formal processes themselves gave ample opportunity for abuse and hiding the lack of
professionalism in reams of project documentation – due to disconnect between real business needs
and the system under construction, between rigid design and delivered software.
Agile Modelling does not seek simplicity at the expense of broad and deep knowledge of enterprise
architecture and technologies. On the contrary, you can afford to omit some details only if you are
fluent with the Enterprise Architect’s vocabulary, if you can see the big picture in terse blueprints, and
team members can catch the ball all the time.

Complex enterprise architectures rarely give us a chance of working out all the details upfront in our
designs, and then build the system to these perfect designs – recipe for the ‘”analysis paralysis” - the
fear of moving forward until your models are perfect’ [Ambler 2001b].
Benefits of the iterative software development processes (as opposed to waterfall approach) have been
recognised long before, and implemented in methodologies like RUP.
Agile Modelling takes iterative process of software construction to the next logical level – change
becomes the norm. Every iteration, or rather increment, closes the loop with customer; customer is
always right.

Although several well-known existing methodologies started calling themselves ‘agile’, Agile
Modelling may create a culture shock in many IT departments. In order to address existing pains

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 19 of 23

Practical SAFE © 2003

without introducing the new headaches, Agile Modelling proponents should pay special attention to the
robust Change Management processes in the organization.
After all, if you are about to raise the wave of iterations and changes, and to make changes a norm, you
better make sure you can manage changes.

IT practitioners will do themselves a favour by watching this space.

When you should consider going ‘light’ (or agile, or adaptive, as opposed to ‘heavy’, or predictive, or
‘monumental’, or planned)?
Martin Fowler [WWW, Fowler, ‘The New Methodology’ web paper] advises that “adaptive
approaches are good when your requirements are uncertain or volatile”, and when team is not too big.
“What if you have both a large project and changing requirements? I don’t have a good answer to
this… I can tell you that things will be very difficult, but I suspect you already know that.”
Hardly a disappointing surprise – there is no silver bullet.

You take the adaptive route if you can rely on and trust to your developers, if they are skilled and
motivated.

<<< Request permission >>>
“So, to summarise. The following factors suggest an adaptive process:

� Uncertain or volatile requirements
� Responsible and motivated developers
� Customer who understands and will get involved.

These factors suggest a predictive process:
� A team of over fifty
� Fixed price, or more correctly a fixed scope, contract.”

Capability Maturity Model Integration (CMMI)

Software Engineering Institute (SEI) at Carnegie Mellon University proposed Capability Maturity
Model (CMM) as a framework from which a process for large complex software efforts can be defined.

First, a little bit of history and context that will help you grasp better the core concepts, goals,
applicability and the near future of this evolving methodology.

Since 1950s, when Information Technology started to penetrate the very fabric of human society
(including business, defence, communication, utilities, health, academic research, infotainment etc)
software industry and its beneficiaries became increasingly dissatisfied with unreliable and
unpredictable nature of software.
In the initial excitement of seeing computers somehow doing some work in the first place, users and
software providers alike needed to rely on software in conducting their mission-critical core business
activities, and became less and less forgiving for the lack of quality and functionality, for the overrun
of budgeted costs and time schedules.
Quality measurement and quality management of the software products and processes have steadily
risen in importance and have become a high priority in IT in 1980s.

In 1986, the Software Engineering Institute (SEI), with assistance from the Mitre Corporation, began
developing a software process maturity framework. This project was largely driven by the needs of
software development and acquisition in defence and large corporations, but with rippling effect
impacting the whole of IT industry.
SEI evolved the maturity framework into Capability Maturity Model for Software (CMM). CMM v0.6
was released in 1990, and refined into CMM v1.0 in 1991.
Review and feedback from the experiences in the software community culminated in CMM v1.1 in
1993.

CMM continued to progress towards CMM v2 in 1997. However, in October 1997, Department of
Defence (SEI’s sponsor) recognised new software industry imperatives for reconciling the multiple
CMMs, and directed that the Software CMM v2 release be halted in favour of work on CMM
Integration (CMMI).

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 20 of 23

Practical SAFE © 2003

CMMI is to become a successor of CMM.

CMM and CMMI are very similar in high-level goals and concepts, but differences in their
terminology and the model structure may cause some confusion. CMMI specifications address
terminology and model structure evolution in detail.
Main thrust in both CMM and CMMI remains the same – measurable and manageable quality of the
software process, and defining the path for the evolutionary software process improvement through
well-defined maturity levels.

CMM structure was defined in terms of five Maturity Levels that contain pre-defined Key Process
Areas (KPA).
KPA identifies activities aiming to achieve a set of goals considered important for the process
capability of this Maturity Level. KPA further organized by Common Features and Key Practices.

CMMI starts off with introduction of distinction (and, accordingly, the need for making first choices)
between continuous and staged representation of the model, and between the disciplines of Systems
Engineering and Software Engineering. This distinction in CMMI models brings about rather
unfortunate differences in the CMMI models structure. We will ignore these differences in CMMI
models for the purpose of our discussion as much as possible (this may not be easy as you delve into
details – eg, continuous representation of CMMI model actually has six Maturity Levels, and they
named slightly different to the ones in the staged representation – life was not meant to be easy�).
Like CMM, CMMI structure is based on Maturity Levels. Unlike CMM, CMMI Maturity Levels
contain Process Areas (PA), not KPAs. CMMI Process areas aim to achieve Specific Goals or Generic
Goals by implementing (you might have guessed) the Specific Practices or Generic Practices.
In case of confusion in dissecting the CMMI model structure rigorously, we use staged representation
as default.

CMMI Generic Practices are grouped into following Common Features:
� Commitment to Perform
� Ability to Perform
� Directing Implementation
� Verifying Implementation

Both in CMM and CMMI, Maturity Level is a well-defined evolutionary plateau towards achieving a
mature software process by lifting the process capability from one level to the next.

CMM
Maturity Level

CMMI
Maturity Level

Characteristics

1 Initial Initial The software process is ad hoc, and occasionally even chaotic.
Few processes are defined, and success depends on individual effort
and heroics. Success cannot be repeated unless the same experienced
individuals are assigned to the next project. Organization can produce
products that work. However, they often greatly exceed the budget and
schedule of the project

2 Repeatable Managed Basic project management processes are established to track cost,
schedule and functionality.
The necessary process discipline is in place to repeat earlier successes
on projects with similar applications

3 Defined Defined The software process for management and development activities is
documented, standardized and integrated into a standard software
process for your organization.
All projects use an approved, tailored version of the process. Standard
processes are consistently applied across the whole enterprise

4 Managed Quantitatively
Managed

Detailed measures, called metrics, of the software process and product
quality are collected.
Both the software process and products are quantatively understood
and controlled. Processes exhibit predictable performance

5 Optimising Optimising Continuous process improvement is enabled by quantative feedback
from the software processes and from piloting innovative ideas and
technologies. Processes adapt to guarantee achievement of quantitative
performance improvement objectives

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 21 of 23

Practical SAFE © 2003

Rigorous software processes (as opposed to sloppy processes or a free-fall scenario) significantly
improve chances of completing projects on time, on budget and to the customer satisfaction.
Software Services vendors who are certified to CMM Level 4 or 5, are able to achieve this dream in
85% of projects (and be not far away on the rest of the projects).
‘Normal’ failure rates for the most of other mere mortal integrators are estimated at around 30%. Other
unflattering estimations point out that we belong to the ‘industry with an 85% failure rate’ [Ambler
2001a, p.7].

Author had enlightening experiences of dealing with CMM Level 5 certified Software Services
Vendor, and can attest that rigours in the enterprise software processes do make a difference.

Patterns and Frameworks

Pattern movement in software construction has been inspired by the work of Christopher Alexander –
urban designer and (‘real’) building architect.
Kent Beck and Ward Cunningham first observed the similarity between software patterns and building
architecture patterns [Cope 1996].

‘Each pattern is a three-part rule, which expresses a relation between a certain context, a problem, and
a solution’ [Alexander 1979].

Following its architectural heritage, software patters use the notion of force. However, term force used
in software patterns figuratively, as there is no physical force to deal with directly (like forces of
gravity or forces from adjoining structures).
Patterns aim to identify forces that determine the problem in the context. Solution is to be found by
balancing forces.

Good pattern must provide a mature, proven solution. Patterns imply repetition, re-use – we should be
able to apply them over and over again (three times at least – Rule of 3) to find a successful solution to
the problem in different contexts.

In one sense, pattern is just documentation, a literary form.
If a pattern is literature, it is like a play in that the Solution should provide catharsis. The Context
introduces the “characters” and the “setting”; the Forces provide a plot, and the Solution provides a
resolution of the tension built up in the conflict of the Forces [Cope 1996].

Again, if a pattern is literature, and pattern designer is writer – there are seven habits that effective
pattern writer should adopt [Vlissides 1996]:

� Habit 1: Taking Time to Reflect
� Habit 2: Adhering to a Structure
� Habit 3: Being Concrete Early
� Habit 4: Keeping Patterns Distinct and Complementary
� Habit 5: Presenting Effectively
� Habit 6: Iterating Tirelessly
� Habit 7: Collecting and Incorporating Feedback

Another notion borrowed into software patterns from the building architecture is the Pattern Language.
Pattern Language – collection of patterns that build on each other to generate a system [Cope 1996].

Patterns often (quite arbitrarily) categorised or layered in three levels of abstraction – idioms, design
patterns and frameworks [Cope 1996]:

� Idioms – low-level patterns that depend on a specific implementation technology
� Design Patterns – made their debut in the landmark book [GoF 1995]. Design Patterns

capture the good practices of object-oriented design independent of a particular programming
language. They are micro-architectures – structures larger than objects but not large enough to
be system-level organizing principles

� Framework Patterns – a framework is a partially completed body of code designed to be
extended for a particular application

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 22 of 23

Practical SAFE © 2003

Framework provides an overall infrastructure that gives an architect ability to plug-n-play with
components.

Aesthetics and the professional ethics are becoming important tangible factors in designing and
applying software patterns.
Potentially, due to subjective nature of software quality and to the often-unclear limits of software
intellectual property, patterns are open to abuses of unproven or unscrupulous techniques.

Patterns and Frameworks is a playing field for mature IT practitioners who are able to find a right
balance between novelty and conformism, in ethical and creative environment. Cultural norms of some
innovative R&D organizations may be tested by the aggressive “disregard for originality” (Brian
Foote) of the pattern community.
However, do not get fooled by these self-deprecating witty statements of the software patterns
pioneers. Pattern movement brings the nuggets of highest professionalism, deep understanding of
software architectures and empirical wisdom to the wider IT community.
Introduction of the higher discipline and re-use of the best practices in the software design is an
innovation and a huge challenge of its own.

<<< … >>>

Boris Monin m1_Chapter07-v2.0.doc – Last updated 08 December 2002 Page 23 of 23

